Abstract

Molecular logic gate provides an intelligent option for simultaneous detection of biomarkers. Herein, a dual-mode DNA logic gate was proposed to portably and intelligently detect multiple microRNAs (miRNAs) by gas pressure biosensing and lateral flow assay (LFA). A platinum-coated gold nanoparticle (Au@PtNP) with catalase-like activity was used as a signal reporter to achieve a dual-signal readout. MiRNAs as the input initiated the cyclic strand displacement reaction (SDR) to enrich a large amount of Au@PtNPs. Thus, miRNA can be visually detected by a lateral flow strip (LFS) using the grayish-brown color of Au@PtNPs as output 1. Furthermore, Au@PtNP-catalyzed decomposition of H2O2 resulted in gas pressure as output 2, which was measured by a digital and handheld gas pressure meter. As a consequence, microRNA 21 (miR-21) was sensitively and reliably detected with the limit of detection (LOD) of 7.2 pM. The selectivity and real sample analysis were both satisfactory. Significantly, two-input and three-input AND logic gates were successfully developed to realize multiple detection of two miRNAs and three miRNAs, which provide a promising way for intelligent multi-input analysis. Predictably, with the advantages of portability, simplicity, and affordability, the dual-mode logic gate based on gas pressure biosensing and LFA offers a new perspective on the field of intelligent and portable biosensing and bioanalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call