Abstract
A toric face ring, which generalizes both Stanley-Reisner rings and affine semigroup rings, is studied by Bruns, Römer and their coauthors recently. In this paper, under the “normality” assumption, we describe a dualizing complex of a toric face ring R in a very concise way. Since R is not a graded ring in general, the proof is not straightforward. We also develop the square-free module theory over R, and show that the Cohen-Macaulay, Buchsbaum, and Gorenstein* properties of R are topological properties of its associated cell complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.