Abstract
In this paper, we consider the composition optimization with two expected-value functions in the form of (1/n)∑i = 1n Fi((1/m)∑j = 1m Gj(x))+R(x) , which formulates many important problems in statistical learning and machine learning such as solving Bellman equations in reinforcement learning and nonlinear embedding. Full gradient- or classical stochastic gradient descent-based optimization algorithms are unsuitable or computationally expensive to solve this problem due to the inner expectation (1/m)∑j = 1m Gj(x) . We propose a dualityfree-based stochastic composition method that combines the variance reduction methods to address the stochastic composition problem. We apply the stochastic variance reduction gradient- and stochastic average gradient algorithm-based methods to estimate the inner function and the dualityfree method to estimate the outer function. We prove the linear convergence rate not only for the convex composition problem but also for the case that the individual outer functions are nonconvex, while the objective function is strongly convex. We also provide the results of experiments that show the effectiveness of our proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.