Abstract
The weak and strong duality theorems in fuzzy optimization problem based on the formulation of Wolfe's primal and dual pair problems are derived in this paper. The solution concepts of primal and dual problems are inspired by the nondominated solution concept employed in multiobjective programming problems, since the ordering among the fuzzy numbers introduced in this paper is a partial ordering. In order to consider the differentiation of a fuzzy-valued function, we invoke the Hausdorff metric to define the distance between two fuzzy numbers and the Hukuhara difference to define the difference of two fuzzy numbers. Under these settings, the Wolfe's dual problem can be formulated by considering the gradients of differentiable fuzzy- valued functions. The concept of having no duality gap in weak and strong sense are also introduced, and the strong duality theorems in weak and strong sense are then derived naturally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.