Abstract
In this paper, we present a duality theory for the robust utility maximisation problem in continuous time for utility functions defined on the positive real line. Our results are inspired by – and can be seen as the robust analogues of – the seminal work of Kramkov and Schachermayer (Ann. Appl. Probab. 9:904–950, 1999). Namely, we show that if the set of attainable trading outcomes and the set of pricing measures satisfy a bipolar relation, then the utility maximisation problem is in duality with a conjugate problem. We further discuss the existence of optimal trading strategies. In particular, our general results include the case of logarithmic and power utility, and they apply to drift and volatility uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.