Abstract
A solution concept in optimization problems with interval-valued objective functions, which is essentially similar to the concept of nondominated solution in vector optimization problems, is introduced by imposing a partial ordering on the set of all closed intervals. The interval-valued Lagrangian function and interval-valued Lagrangian dual function are also proposed to formulate the dual problem of the interval-valued optimization problem. Under this setting, weak and strong duality theorems can be obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.