Abstract
In mathematical programming, duality theorems play a central role. Especially, in convex and quasiconvex programming, Lagrange duality and surrogate duality have been studied extensively. Additionally, constraint qualifications are essential ingredients of the powerful duality theory. The best-known constraint qualifications are the interior point conditions, also known as the Slater-type constraint qualifications. A typical example of mathematical programming is a minimization problem of a real-valued function on a vector space. This types of problems have been studied widely and have been generalized in several directions. Recently, the authors investigate set functions and Fenchel duality. However, duality theorems and its constraint qualifications for mathematical programming with set functions have not been studied yet. It is expected to study set functions and duality theorems. In this paper, we study duality theorems for convex and quasiconvex set functions. We show Lagrange duality theorem for convex set functions and surrogate duality theorem for quasiconvex set functions under the Slater condition. As an application, we investigate an uncertain problem with motion uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.