Abstract

Chemical Physics The phenomenon of roaming in chemical reactions (that is, bypassing the minimum energy pathway from unlikely geometries) has attracted a great deal of attention in the chemical reaction dynamics community over the past decade and still demonstrates unexpected results. Using velocity-map imaging of state-selected H2 products of H2CO photodissociation, Quinn et al. discovered the bimodal structure of rotational distribution of the other product fragment, CO. Quasiclassical trajectories showed that this bimodality originates from two distinctive reaction pathways that proceed by the trans or cis configuration of O–C–H⋯H, leading to high or low rotational excitations of CO, respectively. Whether such a mechanism is present in the many other chemical reactions for which roaming reaction pathways have been reported is yet to be determined. Science , this issue p. [1592][1] [1]: /lookup/doi/10.1126/science.abc4088

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call