Abstract
ABSTRACT Recently, Yamanaka and Yamashita proposed the so-called positively homogeneous optimization problem, which includes many important problems, such as the absolute-value and the gauge optimization problems. They presented a closed form of the dual formulation for the problem, and showed weak duality and the equivalence to the Lagrangian dual under some conditions. In this work, we focus on a special positively homogeneous optimization problem, whose objective function and constraints consist of some gauge and linear functions. We prove not only weak duality but also strong duality. We also study necessary and sufficient optimality conditions associated to the problem. Moreover, we give sufficient conditions under which we can recover a primal solution from a Karush-Kuhn-Tucker point of the dual formulation. Finally, we discuss how to extend the above results to general optimization problems by considering the so-called perspective functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.