Abstract
In this paper we study convex caustics in Minkowski billiards. We show that for the Euclidean billiard dynamics in a planar smooth, centrally symmetric, strictly convex body K, for every convex caustic which K possesses, the ‘dual’ billiard dynamics in which the table is the Euclidean unit ball and the geometry that governs the motion is induced by the body K, possesses a dual convex caustic. Such a pair of caustics are dual in a strong sense, and in particular they have the same perimeter, Lazutkin parameter (both measured with respect to the corresponding geometries), and rotation number. We show moreover that for general Minkowski billiards this phenomenon fails, and one can construct a smooth caustic in a Minkowski billiard table which possesses no dual convex caustic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.