Abstract

Abstract Geodesic coalescence, or the tendency of geodesics to merge together, is a hallmark phenomenon observed in a variety of planar random geometries involving a random distortion of the Euclidean metric. As a result of this, the union of interiors of all geodesics going to a fixed point tends to form a tree-like structure that is supported on a vanishing fraction of the space. Such geodesic trees exhibit intricate fractal behaviour; for instance, while almost every point in the space has only one geodesic going to the fixed point, there exist atypical points that admit two such geodesics. In this paper, we consider the directed landscape, the recently constructed [ 18] scaling limit of exponential last passage percolation (LPP), with the aim of developing tools to analyse the fractal aspects of the tree of semi-infinite geodesics in a given direction. We use the duality [ 39] between the geodesic tree and the interleaving competition interfaces in exponential LPP to obtain a duality between the geodesic tree and the corresponding dual tree in the landscape. Using this, we show that problems concerning the fractal behaviour of sets of atypical points for the geodesic tree can be transformed into corresponding problems for the dual tree, which might turn out to be easier. In particular, we use this method to show that the set of points admitting two semi-infinite geodesics in a fixed direction a.s. has Hausdorff dimension $4/3$, thereby answering a question posed in [ 12]. We also show that the set of points admitting three semi-infinite geodesics in a fixed direction is a.s. countable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call