Abstract
This paper is a study of duality in the absence of canonicity. Specifically it concerns double quasioperator algebras, a class of distributive lattice expansions in which, coordinatewise, each operation either preserves both join and meet or reverses them. A variety of DQAs need not be canonical, but as has been shown in a companion paper, it is canonical in a generalized sense and an algebraic correspondence theorem is available. For very many varieties, canonicity (as traditionally defined) and correspondence lead on to topological dualities in which the topological and correspondence components are quite separate. It is shown that, for DQAs, generalized canonicity is sufficient to yield, in a uniform way, topological dualities in the same style as those for canonical varieties. However topology and correspondence are no longer separable in the same way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.