Abstract
Abstract We study in this article the dual of a (strictly) commutative group stack $G$ and give some applications. Using the Picard functor and the Picard stack of $G$, we first give some sufficient conditions for $G$ to be dualizable. Then, for an algebraic stack $X$ with suitable assumptions, we define an Albanese morphism $a_X: X\longrightarrow A^1(X)$ where $A^1(X)$ is a torsor under the dual commutative group stack $A^0(X)$ of $\textrm{Pic}_{X/S}$. We prove that $a_X$ satisfies a natural universal property. We give two applications of our Albanese morphism. On the one hand, we give a geometric description of the elementary obstruction and of universal torsors (standard tools in the study of rational varieties over number fields). On the other hand, we give some examples of algebraic stacks that satisfy Grothendieck’s section conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.