Abstract

An intriguing new duality between planar MHV gluon amplitudes and light-like Wilson loops in N=4 super Yang-Mills is investigated. We extend previous checks of the duality by performing a two-loop calculation of the rectangular and pentagonal Wilson loop. Furthermore, we derive an all-order broken conformal Ward identity for the Wilson loops and analyse its consequences. Starting from six points, the Ward identity allows for an arbitrary function of conformal invariants to appear in the expression for the Wilson loop. We compute this function at six points and two loops and discuss its implications for the corresponding gluon amplitude. It is found that the duality disagrees with a conjecture for the gluon amplitudes by Bern et al. A recent calculation by Bern et al indeed shows that the latter conjecture breaks down at six gluons and at two loops. By doing a numerical comparison with their results we find that the duality between gluon amplitudes and Wilson loops is preserved. This review is based on the author's PhD thesis and includes developments until May 2008.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.