Abstract
We prove a conjecture of Boucksom-Demailly-Păun-Peternell, namely that on a projective manifold X X the cone of pseudoeffective classes in H R 1 , 1 ( X ) H^{1,1}_{\mathbb {R}}(X) is dual to the cone of movable classes in H R n − 1 , n − 1 ( X ) H^{n-1,n-1}_{\mathbb {R}}(X) via the Poincaré pairing. This is done by establishing a conjectured transcendental Morse inequality for the volume of the difference of two nef classes on a projective manifold. As a corollary the movable cone is seen to be equal to the closure of the cone of balanced metrics. In an appendix by Boucksom it is shown that the Morse inequality also implies that the volume function is differentiable on the big cone, and one also gets a characterization of the prime divisors in the non-Kähler locus of a big class via intersection numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.