Abstract

In a paper published in 1939, Ernest Nagel described the role that projective duality had played in the reformulation of mathematical understanding through the turn of the nineteenth century, claiming that the discovery of the principle of duality had freed mathematicians from the belief that their task was to describe intuitive elements. While instances of duality in mathematics have increased enormously through the twentieth century, philosophers since Nagel have paid little attention to the phenomenon. In this paper I will argue that a reassessment is overdue. Something beyond doubt is that category theory has an enormous amount to say on the subject, for example, in terms of arrow reversal, dualising objects and adjunctions. These developments have coincided with changes in our understanding of identity and structure within mathematics. While it transpires that physicists have employed the term ‘duality’ in ways which do not always coincide with those of mathematicians, analysis of the latter should still prove very useful to philosophers of physics. Consequently, category theory presents itself as an extremely important language for the philosophy of physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.