Abstract

We investigate the possible classification of zero-temperature spin-gapped phases of multicomponent electronic systems in one spatial dimension. At the heart of our analysis is the existence of non-perturbative duality symmetries which emerge within a low-energy description. These dualities fall into a finite number of classes that can be listed and depend only on the algebraic properties of the symmetries of the system: its physical symmetry group and the maximal continuous symmetry group of the interaction. We further characterize possible competing orders associated to the dualities and discuss the nature of the quantum phase transitions between them. Finally, as an illustration, the duality approach is applied to the description of the phases of two-leg electronic ladders at incommensurate filling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.