Abstract
An analogue of McKean's stochastic product integral is introduced and used to define stochastic processes with independent increments on quantum groups. The explicit form of the dual pairing (q-analogue of the exponential map) is calculated for a large class of quantum groups. The constructed processes are shown to satisfy generalized Feynman-Kac type formulas, and polynomial solutions of associated evolution equations are introduced in the form of Appell systems. Explicit calculations for Gauss and Poisson processes complete the presentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.