Abstract
Here, the graphene oxide (GO)/SiO2-loaded dual-imprinted membranes (GS-DIMs) were constructed based on the self-polymerization imprinting technique of dopamine, in which a twice polydopamine (PDA)-based imprinting strategy had been successfully developed to obtain the three-dimensional nanocomposite membrane-based separation system. Meanwhile, the pollution-intensive antibiotics of tetracycline (TC) was used as template molecule throughout the GS-DIMs synthesis, and the dopamine molecules were simultaneously used as functional monomer and cross-linking agent during the twice polydopamine (PDA)-based imprinting processes. Therefore, dual-TC-imprinted sites had been prepared based on the as-designed dual imprinting processes, the as-prepared GS-DIMs-based separation system with dual-TC-imprinted structures could not only allow for the largely enhanced rebinding result of 65.61 mg/g and faster adsorption equilibrium rate within 20 min, but also facilitate the permselectivity performance from TC-based complex separation system and mimetic water sample. Importantly, we demonstrated the applications and effects of the dual-imprinted membrane-based separation materials to selective rebinding and separation of TC from complex solution systems and mimetic water samples. The as-obtained permselectivity factors (β) around 4.0 strongly illustrated the efficiently selective separation ability and high-intensitive recognizability of TC than any other non-template molecules based on our GS-DIMs-based separation system. Overall, the as-designed GS-DIMs had great potential for selective separation applications and provided critical comparisons based on the as-achieved excellent rebinding and permselectivity performance, which encompassed innovative GO/SiO2-loaded nanocomposite and PDA-based dual-TC-imprinted system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.