Abstract

Single-cell RNA sequencing (ScRNA-seq) technology reveals gene expression information at the cellular level. The critical tasks in ScRNA-seq data analysis are clustering and dimensionality reduction. Recent deep clustering algorithms are used to optimize the two tasks jointly, and their variations, graph-based deep clustering algorithms, are used to capture and preserve topological information in the process. However, the existing graph-based deep clustering algorithms ignore the distribution information of nodes when constructing cell graphs which leads to incomplete information in the embedding representation; and graph convolutional networks (GCN), which are most commonly used, often suffer from over-smoothing that leads to high sample similarity in the embedding representation and then poor clustering performance. Here, the dual-GCN-based deep clustering with Triplet contrast (scDGDC) is proposed for dimensionality reduction and clustering of scRNA-seq data. Two critical components are dual-GCN-based encoder for capturing more comprehensive topological information and triplet contrast for reducing GCN over-smoothing. The two components improve the dimensionality reduction and clustering performance of scDGDC in terms of information acquisition and model optimization, respectively. The experiments on eight real ScRNA-seq datasets showed that scDGDC achieves excellent performance for both clustering and dimensionality reduction tasks and is high robustness to parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call