Abstract

Recently we have developed the dual-functional Tamm-Dancoff approximation (DF-TDA) method. DF-TDA is an alternative to linear-response time-dependent density functional theory (LR-TDDFT) with the advantage of providing a correct double-cone topology of S1/S0 conical intersections. In the DF-TDA method, we employ different functionals, which are denoted G and F, for orbital optimization and Hamiltonian construction. We use the notation DF-TDA/G:F. In the current work, we propose that G be the same as F except for having 100% Hartree-Fock exchange. We use the notation F100 to denote functional F with this modification. A motivation for this is that functionals with 100% Hartree-Fock exchange are one-electron self-interaction-free. Here we validate the use of F100/M06 to compute vertical excitation energies and the global potential energy surface of ammonia near a conical intersection to further validate the F100 method for photochemical problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.