Abstract

Photothermal therapy (PTT) combined with chemotherapy has been highly desirable to improve the tumor treatment efficacy. Here, we report a novel controlled release nano-carrier system named Se-PEG-Au NPs-DOX (SePAD) for achieving chemo-photothermal synergistic tumor therapy. In this system, the diselenide-containing co-polymers (mPEG-Se–Se-PEGm) were anchored onto the surface of Au NPs via AuSe interactions and the soluble chemotherapeutic doxorubicin (Dox) was loaded into the monolayers. This structure is proved to be stable in a high biological thiols environment. Strikingly, the SePAD presents an ideal efficient photothermal capability and a controllable Dox release behavior by dynamic AuSe interaction in GSH-rich tumor cells when irradiated under 808 nm NIR laser. Following, the results of in vitro and in vivo experiments all demonstrat the superior antitumor properties of SePAD in murine breast cancer. Thus, this system provides a promising strategy to realize chemo-photothermal synergistic combination therapy for breast tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.