Abstract

BackgroundClinic treatment of diabetic foot ulcers (DFUs) is considerably challenging. Impaired wound healing may be caused by poor vascularization and dysfunction of the extracellular matrix, which leads to poor re-epithelialization and increased risk of infection. In this study, we evaluated the treatment potential of a functional dressing comprising quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan) and magnesium (Mg) on DFUs.MethodsDressings were prepared by vacuum freeze-drying. The cellular proliferation, migration, and angiogenesis potential of the functional dressings were determined in vitro. Methicillin-resistant Staphylococcus aureus (MRSA, ATCC43300) and methicillin-resistant Staphylococcus epidermidis 287 (MRSE287) were used to evaluate the antibacterial efficiency of the dressings. Finally, a diabetic rat model with infected wounds was used to further evaluate the effects of functional dressings on the healing of DFUs.ResultsFunctional dressings facilitated the migration of human dermal fibroblasts and human umbilical vein endothelial cells (HUVECs), while also stimulating angiogenesis in HUVECs. Additionally, the functional dressing could effectively eradicate MRSA and MRSE, exhibiting excellent antibacterial ability against drug-resistant bacteria. The results of in vivo microbiological and histological tests demonstrated effective anti-infection ability and wound-healing potential of this functional dressing.ConclusionsThe dual-functional dressing exhibited wound-healing ability and anti-infection efficiency, demonstrating potential application prospects in DFU treatment.Translational potential of this articleAs one of the common and serious complications of diabetes, DFUs do not heal easily, causing great suffering to patients. Therefore, improvement in the prognosis of DFUs is a crucial clinical need. The dual-functional dressing prepared in this study was proven to improve the treatment of DFUs, both in vitro and in vivo. Considering its urgent clinical necessity and good biocompatibility of its raw materials, such as alginate, Mg, and chitosan derivatives, this dual-functional dressing presents good prospects for clinical translation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.