Abstract

Micro-hierarchical structured shellac films were prepared using a solution casting method with dodecyltrichloro-immobilized shellac microparticles. We evaluated two opposite surfaces of the shellac films—one a micro-hierarchical structured side and the other a neutralized shellac side using alkali ethanol—for their applications in the medical field. A bending strength test using a tensile strength testing machine and measurement of surface hardness using a scratch hardness tester indicated that the optimal composition of the base films comprised 15% shellac and 10% calcium phosphate as durability promoting agents. Further, dodecyltrichloro-immobilized shellac microparticles were synthesized and spray-deposited on the films. The solubility of shellac increased as the pH of the shellac solution increased. Analyses of cell adhesion, proliferation, and anti-thrombus efficiency were performed using a WST assay, field emission scanning electron microscope, and hemocytometer. The contact angle with the micro-hierarchical structure surface was approximately 150°. The spray-deposited shellac film yielded a lower cell and platelet adhesion rate (20%) than the untreated film. These results indicate that the micro-hierarchical structure has unique properties and that this novel superhydrophobic biodegradable shellac film can be applied as a blood/tissue-compatible, biodegradable material for implantable medical devices that need an anti-adhesion barrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.