Abstract

High thermal efficiency coupled to minimum pollutants emissions imposed by the stringent standard emissions limitations in reciprocating engines represent the main target of the engine manufacturers industry. Conventional diesel combustion strategy is widely used worldwide due to its excellent fuel economy. This combustion strategy allows operating under lean mixtures of fuel and air that provide high thermal efficiency. In addition, this type of combustion can be applied from light-duty engines to large bore marine engines. However, the combustion process leads to high NOx and particle matter emissions, being impossible to reduce both pollutants simultaneously. Hence, manufactures have incorporated aftertreatment systems in order to meet the imposed standard emissions limitations, which are aimed to provide cleaner emissions and high efficiency. By contrast, these systems required for the emissions mitigation result in a very complex processes and an increase in the engine production and operational costs. The research community continues developing alternative solutions to the conventional diesel combustion concept keeping the benefits of this combustion process while the emissions are reduced (mainly focused on NOx and soot). Research community have found in the low temperature combustion strategies the combustion process able to provide excellent high thermal efficiency and ultra-low NOx and smoke emissions. In this sense, the literature review states that this types of combustion processes allow the simultaneous reduction of NOx and smoke, breaking the traditional trade-off found in diesel engines. Amongst others, the most promising strategy is the reactivity controlled compression ignition. This combustion process is characterized by using two fuels and is able to solve the main challenges of the low temperature combustion processes such as combustion phasing control. Nonetheless, the reactivity controlled strategy also presents some challenges such as excessive carbon monoxide and unburned hydrocarbons during low load operation and high pressure rise rate and in-cylinder pressure that limit the engine range operation. The general objective of this investigation is to provide a dual-fuel strategy able to operate over the whole range providing similar or better thermal efficiency that the conventional diesel combustion and ultra-low values of NOx and smoke. In addition, the investigation also explores the particle emissions of the concept since it is regulated by the standard emissions. The combustion process that responds to the target provided at the general objective is the Dual-Fuel Dual-Mode concept. This concept uses two fuels and switches from a dual-fuel fully premixed strategy (based on the RCCI concept) during low load operation to a diffusive nature during high load operation. In order to explore the capabilities of the concept, two hardware configurations are used and a particle size distribution exploration is performed. Finally, considering the main findings of the investigation, the last chapter is aimed to provide the benefits of the combustion process developed as well as the main limitations or future works of the concept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call