Abstract

Frequency sweeping interferometry (FSI) is a technique where absolute distance measurements are made without ambiguity, using synthetic wavelengths resulting from frequency sweeps. Accuracy is mainly dependent on the synthetic wavelength measurement using a Fabry-Perot interferometer to count resonances as frequency sweeps. Measurement uncertainty increases with distance due to propagation of uncertainty in the synthetic wavelength measurement. For large distances, the number of fringes dominates performance, leading to a linear decrease of accuracy with range. To overcome this problem, the dual FSI concept was introduced, where the measurement process for large distances is reduced to the close-range case, by limiting the interferometer optical path difference. This is achieved by increasing the reference arm with a long reference fiber, and using an ancillary interferometer to calibrate the fiber length continuously. This dual FSI concept was implemented and fully tested in view of ESA-PROBA3 space mission. The sensor is composed of an external cavity diode laser, a high-finesse Fabry-Perot interferometer, and a dual measurement system. Accuracies better than 32 µm for a measurement range from 51 to 61 m were achieved using a reference fiber with 71 m, while maintaining the reduced complexity inherent to FSI technique, which is mandatory for space applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.