Abstract

Randomized measurement protocols such as classical shadows represent powerful resources for quantum technologies, with applications ranging from quantum state characterization and process tomography to machine learning and error mitigation. Recently, the notion of measurement dual frames, in which classical shadows are generalized to dual operators of positive operator-valued measure (POVM) effects, resurfaced in the literature. This brought attention to additional degrees of freedom in the postprocessing stage of randomized measurements that are often neglected by established techniques. In this work, we leverage dual frames to construct improved observable estimators from informationally complete measurement samples. We introduce novel classes of parametrized frame superoperators and optimization-free dual frames based on empirical frequencies, which offer advantages over their canonical counterparts while retaining computational efficiency. Remarkably, this comes at almost no quantum or classical cost, thus rendering dual frame optimization a valuable addition to the randomized measurement toolbox. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.