Abstract
There is a current lack of data pertaining to the potential link between gout flares and dual-energy computed tomography radiomic features. This study aimed to construct and validate a comprehensive dual-energy computed tomography-based radiomics model for differentiating patients with and without gout flares. The analysis included 200 patients, of whom 150 were confirmed to have experienced at least one flare in the past 12months; the remaining 50 patients did not experience flares. The radiomic features of the tophi at the bilateral first metatarsophalangeal joints were extracted and analyzed. Optimal radiomic features were selected using the least absolute shrinkage and selection operator method, and logistic regression analysis was used to screen clinical characteristics and establish a clinical model. The optimal radiomic features were then combined with the identified independent clinical variables to develop a comprehensive model. The performances of the radiomic, clinical, and comprehensive models were evaluated using receiver operating characteristic curve analysis, calibration curves, and decision curve analysis. Four radiomic features distinguished patients with at least one flare from those without flares and were used to establish the radiomic model. Disease duration and hypertension were independent factors that differentiated flare occurrences. The radiomic, clinical, and comprehensive models showed favorable discrimination, with areas under the receiver operating characteristic curves of 0.76 (95% CI, 0.69-0.83), 0.72(95% CI, 0.63-0.80), and 0.79(95% CI, 0.73-0.86), respectively. The calibration curves (P > 0.05) showed that the differentiated values of the comprehensive model agreed well with the actual values. Decision curve analysis demonstrated that the comprehensive model achieved higher net clinical benefits than the use of either the radiomic or clinical model alone. The results of this study suggest that a radiomics model can distinguish patients with and without gout flares. Our proposed clinical radiomics nomogram can increase the efficacy of differentiating flare occurrence, which may facilitate the clinical decision-making process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.