Abstract

This study explored the feasibility of dual-energy computed tomography (DECT) for the diagnosis of mediastinal lymph node (LN) metastasis in patients with lung cancer. Forty-two consecutive patients with lung cancer, who underwent DECT, were included in this retrospective study. The attenuation value (Hounsfield unit) in virtual monochromatic images and the iodine concentration in the iodine map were measured at mediastinal LNs. The slope of the spectral attenuation curve (K) and normalized iodine concentration (in thoracic aorta) were calculated. The measurement results were statistically compared using 2 independent samples t test. Receiver operating characteristic curve analysis, net reclassification improvement, and integrated discrimination improvement were used to evaluate the diagnostic performance of DECT for mediastinal LN metastasis. A total of 74 mediastinal LNs were obtained, including 33 metastatic LNs and 41 nonmetastatic LNs. The attenuation value at the lower energy levels of virtual monochromatic images (40-90 keV), K, and normalized iodine concentration demonstrated a significant difference between metastatic LNs and nonmetastatic LNs. The attenuation value at 40 keV was the most favorable biomarker for the diagnosis of mediastinal LN metastasis (area under curve, 0.91; sensitivity, 0.94; specificity, 0.81), which showed a much better performance than the LN diameter-based evaluation method (area under curve, 0.72; sensitivity, 0.66; specificity, 0.82; net reclassification improvement, 0.359; integrated discrimination improvement, 0.330). Dual-energy computed tomography is a promising diagnostic approach for the diagnosis of mediastinal LN metastasis in patients with lung cancer, which may help clinicians implement personalized treatment strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call