Abstract

We design a nanohybrid for the detection of hydrogen sulfide (H2S) based on mesoporous silica nanoparticles (MSNs). A phosphorescent iridium(III) complex and a specific H2S-sensitive merocyanine derivative are embedded into the nanohybrid. It exhibits a unique dual emission that is ascribed to the iridium(III) complex and the merocyanine derivative, respectively. Upon addition of sodium hydrogen sulfide (NaHS), the emission from the merocyanine derivative is quenched, while the emission from the iridium(III) complex is almost unchanged, which enables the ratiometric detection of H2S. Additionally, the nanohybrid has a long luminescence lifetime and displays a significant change in luminescence lifetime in response to H2S. Intracellular detection of H2S is performed via ratiometric imaging and photoluminescence lifetime imaging microscopy. Compared with the intensity-based method, the lifetime-based detection is independent of the probe concentration and can efficiently distinguish the signals of the probe from the autofluorescence in complex biological samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.