Abstract

Developing scaffold materials with excellent biocompatibility, mechanical properties, and controlled drug release properties is vital to tissue engineering. In this study, we fabricated silk fibroin (SF)/poly(lactide-co-glycolide) (PLGA) nanofiber scaffolds containing recombinant human bone morphogenetic protein 2 (rhBMP2) and dexamethasone (DXM) via coaxial electrospinning, which were used in in vitro bone formation with rat bone marrow mesenchymal stem cells (rBMSCs). An in vitro drug release study was adopted to evaluate the sustained release potential of the core-shell structured nanofibers. Furthermore, we detected the potential of the SF/PLGA nanofiber membrane in vitro. In vitro studies showed that rhBMP2 still remained active on the nanofiber membrane. In addition, the dual-drug-loaded nanofiber membrane showed an early burst release of DXM and late sustained release of rhBMP2. rhBMP2 and DXM exhibited strong osteogenic differentiation potential when they acted on rBMSCs. Therefore, the SF/PLGA nanofiber membrane loaded with rhBMP2 and DXM has great potential for the enhancement of bone regeneration.

Highlights

  • Bone tissue has a self-repairing ability, when facing tumor resection, deformity, bone hypoplasia, serious fractures, and other bone injuries, the feasible way to treat bone defects is based on bone graft or implantation of allogeneic materials [1]

  • The results showed that nanofiber scaffolds containing both DXM and recombinant human bone morphogenetic protein 2 (rhBMP2) drugs could synergistically induce the upregulation of ALP activity in rat bone marrow mesenchymal stem cells (rBMSCs) and had better bone induction ability

  • There are few calcium nodules in the silk fibroin (SF)/PLGA group, while there are more of those in the SF-DXM/PLGA-rhBMP2 (25 μg) group. These results indicate that the drug-loaded coaxial nanofibers are more likely to induce osteogenic differentiation of rBMSCs

Read more

Summary

Introduction

Bone tissue has a self-repairing ability, when facing tumor resection, deformity, bone hypoplasia, serious fractures, and other bone injuries, the feasible way to treat bone defects is based on bone graft or implantation of allogeneic materials [1]. These treatments can restore tissue integrity and functionality, but they may fail to provide optimal therapeutic outcomes because of the resulting poor bone quality, extensive tissue loss, or compromised regenerative capacity. One strategy for repairing or replacing bone is to design bone tissue by implanting scaffolds with a combination of cells and bioactive molecules [2,3,4]. Scaffolds should have a physical structure and a chemical composition similar to natural bone

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call