Abstract

Strain estimation is vital in phase-sensitive optical coherence elastography (PhS-OCE). In this Letter, we introduce a novel, to the best of our knowledge, method to improve strain estimation by using a dual-convolutional neural network (Dual-CNN). This approach requires two sets of PhS-OCE systems: a high-resolution system for high-quality training data and a cost-effective standard-resolution system for practical measurements. During training, high-resolution strain results acquired from the former system and the pre-existing strain estimation CNN serve as label data, while the narrowed light source-acquired standard-resolution phase results act as input data. By training a new network with this data, high-quality strain results can be estimated from standard-resolution PhS-OCE phase results. Comparison experiments show that the proposed Dual-CNN can preserve the strain quality even when the light source bandwidth is reduced by over 80%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.