Abstract
Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.
Highlights
Any indication that a compound and/or one of its metabolites can induce the transcription of P450 (CYP) metabolic enzymes and hepatotoxicity is a serious problem in drug development
To introduce a single bacterial artificial chromosome (BAC) clone into a specific acceptor site in the host cells using Cre, a loxP site was introduced into the recombinant BAC and into the genome of the host cells
The open reading frames (ORFs) of CYP3A4 was replaced with enhanced green fluorescent protein (EGFP), and ampicillin-resistant (Ampr)/Zeor clones were selected
Summary
Any indication that a compound and/or one of its metabolites can induce the transcription of P450 (CYP) metabolic enzymes and hepatotoxicity is a serious problem in drug development. Such ‘‘CYP induction’’ may attenuate the pharmacological effect of the primary drug or those of subsequently administered drugs, effects that are known as drug-drug interactions. In addition to being cell-based, this assay should be inexpensive, easy to use, predictive, reproducible, mechanism-based, and applicable to high content screening (HCS). Such an assay requires cells that can be grown vigorously and quickly, that respond adequately to compounds, and, most importantly, that can be similar to human adult hepatocytes. In terms of the latter, CYP3A4 is an excellent marker of functional adult hepatocytes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.