Abstract

Chaotic optical communication was initially proposed to provide advanced physical layer security for optical communication. Here, we propose and numerically demonstrate an optical chaos communication scheme based on semiconductor lasers subject to intensity modulation optical injection for secure transmission of quadrature amplitude modulation (QAM) messages. In this scheme, two chaotic sources were generated with different modulation parameters and acted as chaotic carriers at the transmitter side, which were subsequently used to drive two receivers in two separate channels. Numerical results demonstrate that this scheme allows for broadband chaos generation and high-quality chaos synchronization can be achieved to simultaneously encrypt two messages for secure communication; a 20 GBaud 16-QAM message was recovered correctly with a transmission distance in standard single mode fiber (SMF) over 120-km, while the other 20 GBaud 64-QAM message was limited to a 20-km fiber transmission distance. The system performance was systematically evaluated by analyzing the bit error ratio (BER) of the recovered message versus the masking coefficient and the transmission distance. Furthermore, our simulations justify the robustness against the mismatch of parameters. Therefore, we hope that this scheme can be experimentally implemented for high-speed chaos communication and secure key distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.