Abstract

The aqueous environment is an ideal site for the generation and transmission of antibiotic resistance genes (ARGs), and has become a sink for multiple ARGs. Detection of multiple ARGs in one-pot by a simple method is essential to control the spread of antibiotic resistance. Herein, we developed a novel fluorescence sensing strategy based on chameleon DNA-templated silver nanoclusters (AgNCs) to achieve simultaneous detection of two ARGs (tet-A and sul-1). A DNA fluorescent probe with AgNCs stabilized at both termini and another DNA probe carried enhancer sequences were designed. The hybridization of the target ARGs and probes can form an infinitely extended linear DNA structure containing multi-branched AgNCs beacons, and the chameleon AgNCs approach the fluorescence enhancer sequence, thereby realizing the transduction and amplification of green and red fluorescence signals. Through this strategy, we successfully achieved highly specific detection of two ARGs with the LOD of 0.45 nM for tet-A and 0.32 nM for sul-1. In addition, the strategy still had good applicability in the detection of actual samples containing complex components. In this study, fluorescent DNA-AgNCs were applied to the rapid, enzyme-free and reliable detection of ARGs for the first time. The excellent performance of the simultaneous detection of two ARGs displayed that this method can be used to simultaneously analyze different types of ARGs, indicating its great potential in rapid screening and quantitative detection of ARGs in various environmental medias.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call