Abstract

To achieve high efficiency photochemical energy conversion, the most challenging task is to seek a full-spectrum-driven photocatalyst with superior charge separation efficiency from UV to NIR region. Herein, we reported a full-spectrum-driven CdIn2S4/W18O49 photocatalyst with dual-channel charge-carriers transfer path. The experimental results indicate that the synergistic effect of Z-scheme heterojunction and LSPR effect markedly improves interfacial charge transfer efficiency and light-harvesting capacity of CdIn2S4/W18O49 composites. It can effectively activate molecular oxygen to generate reactive oxygen species (ROS) for superior photocatalytic E. coli inactivation and tetracycline (TC) degradation. The enhanced molecular oxygen activation capacity was confirmed by nitroblue tetrazolium (NBT) and p-phthalic acid (TA) transformation experiments. Based on density functional theory (DFT) calculations and scavenger experiments, a possible photocatalytic reaction mechanism was proposed. This work provides a strategy for fabricating full-spectrum-driven photocatalyst with excellent photocatalytic activity, which furnishes a new insight for interface charge transfer and molecular oxygen activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.