Abstract
We present the design, fabrication, and measurement of a dual-band planar metamaterial with two distinct electric resonances at 1.0 and 1.2 THz, as a step towards the development of frequency agile or broadband THz materials and devices. A method of defining the effective thickness of the metamaterial layer is introduced to simplify the material design and characterization. Good agreement between the simulated and measured transmission is obtained for the fabricated sample by treating the sample as multi-layer system, i. e. the effective metamaterial layer plus the rest of the substrate, as well as properly modeling the loss of the substrate. The methods introduced in this paper can be extended to planar metamaterial structures operating in infrared and optical frequency ranges.
Highlights
Artificial electromagnetic structures, called metamaterials, can be engineered to exhibit exotic electric and magnetic properties not realizable in nature [1, 2, 3, 4, 5]
We present the design, fabrication, and measurement of a dual-band planar metamaterial with two distinct electric resonances at 1.0 and 1.2 THz, as a step towards the development of frequency agile or broadband THz materials and devices
The methods introduced in this paper can be extended to planar metamaterial structures operating in infrared and optical frequency ranges
Summary
Artificial electromagnetic structures, called metamaterials, can be engineered to exhibit exotic electric and magnetic properties not realizable in nature [1, 2, 3, 4, 5]. Metamaterials that operate at terahertz (THz) frequencies are attractive [9, 10, 11], since most materials found in nature are transparent to electromagnetic radiation at these frequencies, and metamaterials are candidates to fill this “terahertz gap”. Terahertz metamaterials far reported have exhibited single-band electric or magnetic responses. As a step towards frequency agile or broadband THz materials and devices, we present here the design, fabrication, and measurement of a dual-band planar electric metamaterial that has two distinct resonances at 1.0 and 1.2 THz. A method to define the effective thickness of the metamaterial layer is introduced, which substantially simplifies the material design and characterization. The methods introduced in this paper are general and can be extended to planar metamaterial structures in the infrared and optical frequency ranges
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.