Abstract

The presence of low-frequency energy in seismic data can help mitigate cycle-skipping problems in full-waveform inversion. Unfortunately, the generation and recording of low-frequency signals in seismic exploration remains a non-trivial task. Extrapolation of missing low-frequency content in field data might be addressed in a data-driven framework. In particular, deep learning models trained on synthetic data could be used for inference on the field data. Such an implementation of switching application domains remains challenging. We, therefore, propose the concept of generative dual-band learning to facilitate the knowledge transfer between synthetic and field seismic data applications of low-frequency data extrapolation. We first explain the two-step procedure for training a generative adversarial network (GAN) that extrapolates low frequencies. Then, we describe the workflow for synthetic dataset generation. Finally, we explore the feasibility of the dual-band learning concept on real nearsurface land data acquired in Saudi Arabia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.