Abstract

In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the designed structure is made of four complementary square rings, on a thin grounded SiO2 layer of 5 µm thickness. Four splits are included in the square rings to provide continuity of graphene layer. Dual band absorption of 90% is provided, which frequency of peak absorption increases with increasing chemical potential of graphene layer. It is shown that with varying dimensions of the split rings an improved bandwidth absorber is also achieved, where absorption band increases with increasing graphene's chemical potential either. To better understand excitation of plasmonic resonances on the proposed structure, electric field distribution on the graphene layer as well as at the unit cell’s cross section is investigated and graphically demonstrated. Dependence of absorption on incidence and polarization angles of the incoming wave is studied and also graphically presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.