Abstract

A novel dual-axis microgyroscope fabricated by a surface micromachining process is developed. A 7.0-μm thick polysilicon layer deposited by LPCVD (Low Pressure Chemical Vapor Deposition) is used for the vibrating structure. The microgyroscope is based on the angular vibration of the four plates with closed-loop rate detection. The comb-driven rotational body tilts to each input-axis parallel to the substrate and the tilting motion is sensed with capacitance change between the bottom electrode and the structure. The two tilting modes enable the sensor to detect two-input axis angular rate simultaneously within a single-chip. In particular, the structure utilizes a simple force-balancing torsional torque which does not need another top electrode layer to reduce the intrinsic non-linearity of a capacitance-type sensor. The vibrating structure is strongly damped by air, so the gyroscope is tested in a high vacuum chamber for a high quality factor with hybrid signal-conditioning integrated circuit. The experiment resulted in a noise equivalent signal of 0.1°/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.