Abstract

Local linear embedding (LLE) algorithm mainly depends on local structures to extract significant features; however, the local structures are sensitive to the selection of neighborhood parameters. To solve this problem, the dual-weight local linear embedding algorithm based on adaptive neighborhood (AN-DWLLE) is proposed. First, the neighborhood parameter is adaptively estimated by computing the distances between the inquiry point and the centers of the inquiry point’s candidate neighborhoods. Then, the neighbor sequence and the local linear structures are integrated to construct the robust local structure that can be used to extract the significant features. A large number of experiments are performed on two bearing data sets. The experimental results illustrate that, compared with other related methods, the AN-DWLLE algorithm can extract more salient features and has greater dimensionality reduction effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.