Abstract

We propose and experimentally demonstrate a dual-wavelength distributed feedback (DFB) laser array utilizing a four-phase-shifted sampled Bragg grating. By using this grating, the coupling coefficient is enhanced by approximately 2.83 times compared to conventional sampled Bragg gratings. The devices exhibit a stable dual-mode lasing achieved by introducing further π-phase shifts at 1/3 and 2/3 positions along the cavity. These devices require only one stage of lithography to define both the ridge waveguide and the gratings, mitigating issues related to misalignment between them. A dual-wavelength laser array has been fabricated with frequency spacings of 320 GHz, 500 GHz, 640 GHz, 800 GHz, and 1 THz. When integrated with semiconductor optical amplifiers, the output power of the device can reach 23.6 mW. Furthermore, the dual-wavelength lasing is maintained across a wide range of injection currents, with a power difference of <3 dB between the two primary modes. A terahertz (THz) signal has been generated through photomixing in a photoconductive antenna, with the measured power reaching 12.8 µW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call