Abstract
In this paper, we investigated a plasmonic demultiplexer structure based on Metal–Insulator–Metal (MIM) waveguides and circular ring resonators. In order to achieve the structure of demultiplexer, two improved ring resonators have been used, which input and outputs MIM waveguides coupled by the ring resonators. To improve the transmission efficiency, a reflector was introduced at the right end of the input and output waveguides. By substituting the ring core with dielectric, the possibility of tuning the resonance wavelength of the proposed structure is illustrated, and the effect of various parameters such as radius and refractive index in transmission efficiency is studied in detail. This is useful for the design of integrated circuits in which it is not possible to extend the dimension of the ring resonator to attain a longer resonance wavelength. Transmission efficiency and quality factor of the single ring are 84% and 110, respectively. The simulation results using finite difference time domain method shows that in the proposed demultiplexer, which is composed of two rings with different core refractive indexes, the average power efficiency, bandwidth for each output channel, and the mean value of crosstalk are estimated 80%, 17 nm, and −26.95 dB, respectively. It is revealed that the significant features of the device are high transmission efficiency, low crosstalk, high-quality factor, and tunability for desired wavelengths. Therefore, the proposed structure has the potential to be applied in plasmonic integrated circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.