Abstract

We propose a novel, to the best of our knowledge, scheme for dual vector millimeter-wave (mm-wave) signal generation and transmission, based on optical carrier suppression (OCS) modulation, precoding, and direct detection by a single-ended photodiode (PD). At the transmitter side, two independent vector radio frequency (RF) signals with precoding, generated via digital signal processing (DSP), are used to drive an in-phase/quadrature (I/Q) modulator operating at the optical OCS modulation mode to simultaneously generate two independent frequency-doubling optical vector mm-wave signals, which can reduce the bandwidth requirement of transmitter's components and enhance spectral efficiency. With the aid of the single-ended PD and subsequent DSP at the receiver side, two independent frequency-doubling vector mm-wave signals can be separated and demodulated without data error. Based on our proposed scheme, we experimentally demonstrate the generation, transmission, and detection of 2-Gbaud 30-GHz quadrature-phase-shift-keying (QPSK) and 2-Gbaud 46-GHz QPSK signals over 10-km single-mode fiber-28 (SMF-28) and 1-m wireless transmission. The results indicate that the bit-error ratio (BER) of the dual vector mm-wave signals can each reach the hard-decision forward-error-correction (HD-FEC) threshold of 3.8 × 10-3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call