Abstract

In the present study, we applied the principles of immunoblotting and light microscopy immunohistochemistry to develop a combined methodology that allows obtaining optical density data in films, as well as morphological and protein distribution data on slides using the same brain tissue section, thus maximizing the data obtained from a single sample. This is especially important when experiments are performed using very valuable or unique tissue samples, which is a very common case in the study of the human brain.The ideal methodology should combine the possibility of measuring levels of expression of a marker, and the capability to map accurately the distribution of that marker in the region of interest. To achieve this, two things are required: first, the technique needs to be sensitive enough to obtain optical density or intensity measurements of the marker, and second, a good preservation of the tissue is needed for the study of distribution patterns and morphological analysis.Here we show that our combined methodology produced reliable results for different tissue preservation conditions (fresh-frozen and fixed tissue), in different species (rat and human), in different brain areas (substantia nigra and striatum), and for the detection of different markers (tyrosine hydroxylase and μ-opioid receptor). This methodology also combines the accuracy of optical density data acquisition in film with obtaining histological slides from the same sample.In summary, the methodology proposed here is very versatile and does not require the use of specialized equipment, other than the routine equipment present in an anatomy laboratory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.