Abstract

In this study, a dual-type responsive electrochemical biosensor was developed for the quantitative detection of α2,6-sialylated glycans (α2,6-sial-Gs), a potential biomarker of tumors. The gold nanorods (AuNRs), which exhibited great specific surface area, as well as good biocompatibility, was synthesized by the way of seed growth method. Furthermore, a biotin-streptavidin (biotin-SA) system was introduced to improve the immunoreaction efficiency. Accordingly, a label-free biosensor was fabricated based on AuNRs-SA for the quick detection of α2,6-sial-Gs by recording the signal of differential pulse voltammetry (DPV). Furthermore, to expand the ultrasensitive detection of α2,6-sial-Gs, a carboxylated single-walled carbon nanohorns/sulfur-doped platinum nanocluster (c-SWCNHs/S-PtNC) was synthesized for the first time as a novel signal label, which showed an excellent catalytic performance. The usage of c-SWCNHs/S-PtNC could significantly amplify the electrochemical signal recorded by the amperometric i-t curve. Herein, a sandwich type biosensor was constructed by combining the AuNRs-SA on the electrode and c-SWCNHs/S-PtNC (signal amplifier). The label-free biosensor possessed a linear range from 5 ng mL−1 to 5 μg mL−1 with a detection limit of 0.50 ng mL−1, and the sandwich-type biosensor possessed a wide linear range from 1 fg mL−1 to 100 ng mL−1 with a detection limit of 0.69 fg mL−1. Furthermore, the biosensor exhibited excellent recovery and stability, indicating its potential for use in actual samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.