Abstract

Staphylococcus aureus integrated with mecA gene, which codes for penicillin-binding protein 2a, is resistant to all penicillins and other beta-lactam antibiotics, resulting in poor treatment expectations in skin and soft tissue infections. The development of a simple, sensitive and portable biosensor for mecA gene analysis in S. aureus is urgently needed. Herein, we propose a dual-toehold-probe (sensing probe)-mediated exonuclease-III (Exo-III)-assisted signal recycling for portable detection of the mecA gene in S. aureus. When the target mecA gene is present, it hybridizes with the sensing probe, initiating Exo III-assisted dual signal recycles, which in turn release numerous "3" sequences. The released "3" sequences initiate catalytic hairpin amplification, resulting in the fixation of a sucrase-labeled H2 probe on the surface of magnetic beads (MBs). After magnet-based enrichment of an MB-H1-H2-sucrase complex and removal of a liquid supernatant containing free sucrase, the complex is then used to catalyze sucrose to glucose, which can be quantitatively detected by a personal glucose meter. With a limit of detection of 4.36 fM for mecA gene, the developed strategy exhibits high sensitivity. In addition, good selectivity and anti-interference capability were also attained with this method, making it promising for antibiotic tolerance analysis at the point-of-care.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.