Abstract

3D braided shape memory composite (SMPC) tubes have great potential in designing smart structural components because of high inertia moment and near-net shape manufacturing. Here we developed a 3D braided carbon fiber reinforced shape memory polyurethane-based composite tube and investigated their thermal/electrical shape memory behaviors subjected to compression. The radial and axial compressive behaviors, thermally-electrically shape memory behaviors, and shape recovery forces of the SMPC tubes with different braiding angles were analyzed. The out-of-plane displacement and temperature field were obtained with 3D digital image correlation (DIC) and infrared thermography to characterize transverse compression deformation. We found that the 60° sample had the highest recovery force compared to the other braided angle samples, while the shape recovery speed was lower than small-angle samples. In the transverse compressive electro-thermal recovery test, the 30° sample reaches to glass transition temperature faster at the same voltage, and the 45° sample exhibits maximum shape recovery speed. The 3D braided SMPC tubes exhibited excellent electro-thermal shape memory behaviors and high recovery force, which were expected to extend the application of smart actuators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call