Abstract

Fe3O4/PSt porous composites with low density, interconnected network structure and superhydrophobic were prepared successfully by a dual-templating method, including High Internal Phase Emulsion (HIPEs) template method and the introduction of organic template species. It was worth mentioning that a novel amphiphilic di-block copolymers P(DMAEMA-b-St) were prepared as emulsifier by reversible addition fragmentation chain transfer (RAFT) polymerization method. At the same time, the effects of PS block length, emulsifier content, Fe3O4 content, DVB content and dispersed phase proportion on HIPEs droplet size and the corresponding polyHIPEs oil absorption were researched. The results showed that the oil adsorption capacity of 9.43 g/g toward toluene under optimal conditions. Subsequently, adsorption isotherm and adsorption kinetics were investigated. The results were shown that the adsorption of oil on adsorbent followed Freundlich model and pseudo-second-order (PSO) model. In addition, the adsorption experiments on a variety of oils demonstrated the wide applicability of Fe3O4/PSt porous composites. The cycling experiments proved that the Fe3O4/PSt porous composites had excellent cycling ability, were easy to recover and could be reused for multiple times. Finally, the adsorption column experiments showed that Fe3O4/PSt porous composites had powerful potential for industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.