Abstract

Hybrid nanostructures integrating electroactive materials with functional species, such as metal-organic frameworks, covalent organic frameworks, graphdiyne etc., are of significance for both fundamental research and energy conversion/storage applications. Here, hierarchical triple-layered nanotube arrays, which consist of hydrogen-substituted graphdiyne frameworks seamlessly sandwiched between an outer layer of nickel–cobalt co-doped molybdenum disulfide nanosheets and an inner layer of mixed cobalt sulfide and nickel sulfide (Co9S8/Ni3S2), are directly fabricated on conductive carbon paper. The elaborate triple-layered structure emerges as a useful hybrid electrode for energy conversion and storage, in which the organic hydrogen-substituted graphdiyne middle layer, with an extended π-conjugated system between the electroactive nanomaterials, provides built-in electron and ion channels that are crucial for performance enhancement. This dual-template synthetic method, which makes use of microporous organic networks to confine a self-template, is shown to be versatile and thus provides a promising platform for advanced nanostructure-engineering of hierarchical multi-layered nanostructures towards a wide range of electrochemical applications.

Highlights

  • Hollow nanomaterials with functional shells and inner voids are promising for advanced energy conversion and storage applications[1,2,3,4,5]

  • We demonstrate the synthesis of hierarchical triple-layered nanoarrays of transition metal chalcogenides (TMCs) directly on a carbon paper by using hydrogen-substituted graphydiyne (HsGDY)-coated nickel cobalt hydroxyl carbonate (NiCoHC) nanowire arrays as a dual template

  • The characteristic vibration and diffraction peaks shown in the Fourier transform infrared (FTIR) spectra (Supplementary Fig. 7) and X-ray diffraction (XRD) patterns (Supplementary Fig. 3), respectively, further identify these nanoarrays as hydroxyl-carbonate, (Ni,Co)(OH)2CO3, with high crystallinity[32,37]

Read more

Summary

Introduction

Hollow nanomaterials with functional shells and inner voids are promising for advanced energy conversion and storage applications[1,2,3,4,5]. The microporous HsGDY layer (step II) in NiCoHC@HsGDY acts as a physical separator to confine the in-situ conversion of NiCoHC nanowires to mixed NiCoS nanotubes in the interior, and a chemical nucleation platform with an ion channel to generate Ni,Co-MoS2 nanosheets on the external surface (step III). This triple-layered nanoarray on carbon paper incorporates inorganics (i.e., TMCs) with organics (i.e., HsGDY), and the intermediate HsGDY layer can work as a built-in electron and ion channel owing to the highly extended π-conjugated system, all pointing toward a potential for being used directly as a binderfree and self-supported electrode. The dual-template approach is further extended to prepare other triple-layered hollow nanostructures of transition metals, such as Ni3S2@HsGDY@Ni-MoS2 nanosheet arrays and Co9S8@HsGDY@Co-MoS2 nanotube arrays, proving its versatility

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.